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 7.1 Machine Learning: Version Space Search 

 In this section and the next, we implement two machine learning 
algorithms: version space search and explanation-based learning. The algorithms 
themselves are presented in detail in Luger (2009, Chapter 10). In this 
chapter, we first briefly summarize them and then implement them in 
Prolog. Prolog is used for machine learning because, as these 
implementations illustrate, in addition to the flexibility to respond to novel 
data elements provided by its powerful built-in pattern matching, its meta-
level reasoning capabilities simplify the construction and manipulation of 
new representations. 

The Version 
Space Search 

Algorithm 

Version space search (Mitchell 1978, 1979, 1982) illustrates the 
implementation of inductive learning as search through a concept space. A 
concept space is a state space representation of all possible generalizations 
from data in a problem domain. Version space search takes advantage of 
the fact that generalization operations impose an ordering on the concepts 
in a space, and then uses this ordering to guide the search. 
Generalization and specialization are the most common types of operations for 
defining a concept space. The primary generalization operations used in 
machine learning and expressed in the predicate calculus (Luger 2009, 
Chapter 2) are: 
Replacing constants with variables. For example: 

color(ball,red) 

generalizes to 
color(X,red) 
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Dropping conditions from a conjunctive expression.  
shape(X, round) ^ size(X, small) ^ color(X, red) 

generalizes to 

shape(X,round) ^ color(X,red) 
Adding a disjunct to an expression. 

shape(X,round) ^ size(X,small) ^ color(X,red) 
generalizes to 

shape(X,round) ^ size(X,small) ^ (color(X,red) v 
      color(X,blue))  

Replacing a property with its parent in a class hierarchy. If  
primary_color is a superclass of red, then 

color(X,red) 

generalizes to 

color(X, primary_color) 

We may think of generalization in set theoretic terms: let P and Q be the 
sets of sentences matching the predicate calculus expressions p and q, 
respectively. Expression p is more general than q iff Q ⊆ P. In the above 
examples, the set of sentences that match color(X, red) contains the 
set of elements that match color(ball, red). Similarly, in example 
2, we may think of the set of round, red things as a superset of the set of 
small, red, round things. Note that the “more general than” relationship 
defines a partial ordering on the space of logical sentences. We express this 
using the “>” symbol, where p > q means that p is more general than q. 
This ordering is a powerful source of constraints on the search performed 
by a learning algorithm. 

We formalize this relationship through the notion of covering. If concept p 
is more general than concept q, we say that p covers q. We define the 
covers relation: let p(x) and q(x) be descriptions that classify objects as 
being positive examples of a concept. In other words, for an object x, 
p(x)  positive(x) and q(x)  positive(x). p covers q 
iff q(x) positive(x) is a logical consequence of p(x)  
positive(x). 
For example, color(X, Y) covers color(ball, Z), which in turn 
covers color(ball, red). As a simple example, consider a domain 
of objects that have properties and values: 

Sizes = {large, small} 

Colors = {red, white, blue} 

Shapes = {ball, brick, cube} 

These objects can be represented using the predicate obj(Sizes, 
Color, Shapes). The generalization operation of replacing constants 
with variables defines the space of Figure 7.1. We may view inductive 
learning as searching this space for a concept that is consistent with all the 
training examples. 



 Chapter 7 Machine Learning 89 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. An example concept space. 
We next present the candidate elimination algorithm (Mitchell 1982) for 
searching the concept space. This algorithm relies on the notion of a version 
space, which is the set of all concept descriptions consistent with the 
training examples. This algorithm works by reducing the size of the version 
space as more examples become available. The first two versions of this 
algorithm reduce the version space in a specific to general direction and a 
general to specific direction, respectively. The third version, called candidate 
elimination, combines these approaches into a bi-directional search. These 
versions of the candidate elimination algorithm are data driven; they 
generalize based on regularities found in the training data. Also, in using 
training data of known classification, these algorithms perform a variety of 
supervised learning. 

Version space search uses both positive and negative examples of the 
target concept. Although it is possible to generalize from positive examples 
only, negative examples are important in preventing the algorithm from 
over generalizing. Not only must the learned concept be general enough to 
cover all positive examples; it also must be specific enough to exclude all 
negative examples. In the space of Figure 7.1, one concept that would 
cover all sets of exclusively positive instances would simply be obj(X, 
Y, Z). However, this concept is probably too general, because it implies 
that all instances belong to the target concept. One way to avoid 
overgeneralization is to generalize as little as possible to cover positive 
examples; another is to use negative instances to eliminate overly general 
concepts. As Figure 7.2 illustrates, negative instances prevent 
overgeneralization by forcing the learner to specialize concepts in order to 
exclude negative instances. The algorithms of this section use both of these 
techniques.  

We define specific to general search, for hypothesis set S, as: 
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Figure 7.2. The role of negative examples in preventing 
overgeneralization. 

 

Begin 
Initialize S to first positive training instance; 

N is the set of all negative instances seen so far; 

For each positive instance p 

       Begin 

     For every s in S, if s does not match p,  

     Replace s with its most specific  
          generalization that matchs p; 

     Delete from S all hypotheses more general than  
          some other hypothesis in S; 

     Delete from S all hypotheses that match a prev- 
          iously observed negative instance in N; 

    End; 

For every negative instance n 

    Begin 

   Delete all members of S that match n; 

         Add n to N to check future hypotheses  
              for overgeneralization; 

  End; 

End 
 

Specific to general search maintains a set, S, of hypotheses, or candidate 
concept definitions. To avoid overgeneralization, these candidate 
definitions are the maximally specific generalizations from the training data. A 
concept, c, is maximally specific if it covers all positive examples, none of 
the negative examples, and for any other concept, c’, that covers the 
positive examples, c < c’. Figure 7.3 shows an example of applying this 
algorithm to the version space of Figure 7.1. The specific to general 
version space search algorithm is built in Prolog in Section 7.1.2. 

We may also search the space in a general to specific direction. This algorithm 
maintains a set, G, of maximally general concepts that cover all of the positive and 
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none of the negative instances. A concept, c, is maximally general if it covers 
none of the negative training instances, and for any other concept, c’, that 
covers no negative training instance, c > c’. In this algorithm, which we 
leave as an exercise, negative instances will lead to the specialization of 
candidate concepts while the algorithm uses positive instances to eliminate 
overly specialized concepts. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Specific to general version space search learning the concept 
“ball.” 

The candidate elimination algorithm combines these two approaches into a bi-
directional search. This bi-directional approach has a number of benefits 
for learning. The algorithm maintains two sets of candidate concepts: G, 
the set of maximally general candidate concepts, and S, the set of 
maximally specific candidates. The algorithm specializes G and generalizes 
S until they converge on the target concept. The algorithm is described: 

Begin 

Initialize G to the most general concept in space; 

Initialize S to first positive training instance; 

For each new positive instance p 

    Begin 

     Delete all members of G that fail to match p; 

     For every s in S, if s does not match p,  

         replace s with its most specific  

         generalizations that match p; 

        Delete from S any hypothesis more general than  
            some other hypothesis in S; 

  Delete from S any hypothesis more general than  
         some hypothesis in G;    
    End; 
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For each new negative instance n 

    Begin 

     Delete all members of S that match n; 

  For each g in G that matches n, replace g with  
          its most general specializations that do  
          not match n; 

     Delete from G any hypothesis more specific than  
          some other hypothesis in G; 

     Delete from G any hypothesis more specific than  
          some hypothesis in S; 

    End; 

If G = S and both are singletons, then the algorithm  
    has found a single concept that is consistent  
    with all the data; 

   If G and S become empty, then there is no concept  
       that covers all positive instances and none of  
       the negative instances; 

End 

Figure 7.4 illustrates the behavior of the candidate elimination algorithm in 
searching the version space of Figure 7.1. Note that the figure does not 
show those concepts that were produced through generalization or 
specialization but eliminated as overly general or specific. We leave the 
elaboration of this part of the algorithm as an exercise and show a partial 
implementation in the next section. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. The candidate elimination algorithm learning the concept “red 
ball.” 
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A Simple Prolog 
Program 

We first implement the specific to general search and then the full bi-
directional candidate elimination algorithm. We also give hints on how to 
construct the general to specific version space search. These search 
algorithms are independent of the representation used for concepts, as long 
as that representation supports appropriate generalization and 
specialization operations. We use a representation of objects as lists of 
features. For example, we describe a small, red, ball with the list: 

[small, red, ball] 

We represent the concept of all small, red things by including a variable in 
the list: 

[small, red, X] 

This representation we call a feature vector, It is less expressive than full logic, 
e.g., it cannot represent the class “all red or green balls.” However, it 
simplifies generalization, and provides a strong inductive bias (Luger 2009, 
Section 10.4). We generalize a feature vector by substituting a variable for a 
constant, for example, the most specific common generalization of 
[small, red, ball] and [small, green, ball] is 
[small, X, ball]. This vector will cover both of the specializations 
and is the most specific vector to do so. 
We define one feature vector as covering another if the first is either identical 
to or more general than the second. Note that unlike unification, covers 
is asymmetrical: values exist for which X covers Y, but Y does not cover X. 
For example, [X, red, ball] covers [large, red, ball] but 
the reverse is not true. We next define the predicate covers for feature 
vectors as: 

covers([ ], [ ]). 

covers([H1 | T1], [H2 | T2]) :-  

     var(H1), var(H2), covers(T1, T2). 

     % variables cover each other 

covers([H1 | T1], [H2 | T2]) :-      

     var(H1), atom(H2), covers(T1, T2). 

     % a variable covers a constant 

covers([H1 | T1], [H2 | T2]) :-   

     atom(H1), atom(H2), H1 = H2, 

     covers(T1, T2). 

     % matching constants 

We next need to determine whether one feature vector is strictly more 
general than another; i.e., the vectors are not identical. We define the 
more_general/2 predicate as: 

more_general(X, Y) :- not(covers(Y,X)),covers(X,Y). 

We implement generalization of feature vectors as a predicate, 
generalize with three arguments, where the first argument is a feature 
vector representing an hypothesis (this vector may contain variables), the 
second argument is an instance, containing no variables. generalize 
binds its third argument to the most specific generalization of the 
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hypothesis that covers the instance. generalize recursively scans the 
feature vectors, comparing corresponding elements. If two elements 
match, the result contains the value of the hypotheses vector in that 
position; if two elements do not match, it places a variable in the 
corresponding position of the generalized feature vector. Note the use of 
the expression not(Feature \= Inst_prop), in the second 
definition of generalize; this double negative enables us to test if two 
atoms will unify without actually performing the unification and forming 
any unwanted variable bindings. We define generalize: 

generalize([ ], [ ], [ ]). 

generalize([Feature | Rest],[Inst_prop | Rest_inst],  
          [Feature | Rest_gen]) :- 

     not(Feature \= Inst_prop),  

     generalize(Rest, Rest_inst, Rest_gen). 

generalize([Feature | Rest],[Inst_prop | Rest_inst],  
          [_ | Rest_gen]) :- 

     Feature \= Inst_prop,  

     generalize(Rest, Rest_inst, Rest_gen). 

These predicates define the essential operations on feature vector 
representations. The remainder of the implementation that follows is 
independent of any specific representation, and may be adapted to a variety 
of representations and generalization operators. 

As discussed in Section 7.1, we may search a concept space in a specific to 
general direction by maintaining a list H of candidate hypotheses. The 
hypotheses in H are the most specific concepts that cover all the positive 
examples and none of the negative examples seen so far. The heart of the 
algorithm is process with five arguments. The first argument to 
process is a training instance, positive(X) or negative(X), 
indicating that X is a positive or negative example. The second and third 
arguments are the current list of hypotheses and the list of negative 
instances. On completion, process binds its fourth and fifth arguments 
to the updated lists of hypotheses and to the negative examples, 
respectively. 

The first clause in the definition below initializes an empty hypothesis set 
to the first positive instance. The second handles positive training instances 
by generalizing candidate hypotheses to cover the instance. It then deletes 
all over-generalizations by removing those that are more general than some 
other hypothesis and eliminating any hypothesis that covers some negative 
instance. The third clause in the definition handles negative examples by 
deleting any hypothesis that covers those instances. 

process(positive(Instance), [ ], N, [Instance], N). 

process(positive(Instance), H, N, Updated_H, N) :- 

     generalize_set(H, Gen_H, Instance), 

     delete(X, Gen_H,(member(Y, Gen_H),  
          more_general(X, Y)), Pruned_H), 

     delete(X, Pruned_H, (member(Y, N), 

     covers(X, Y)), Updated_H). 
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process(negative(Instance), H, N, Updated_H,  
          [InstanceN]) :- 

     delete(X, H, covers(X, Instance), Updated_H). 

process(Input, H, N, H, N):-  %Catches bad input  

     Input \= positive(_), 

     Input \= negative(_), 

     write(’Enter either positive(Instance) or  
          negative(Instance) ‘), nl. 

An interesting aspect of this implementation is the delete predicate, a 
generalization of the usual process of deleting all matches of an element 
from a list. One of the arguments to delete is a test that determines 
which elements to remove from the list. Using bagof, delete matches 
its first argument (usually a variable) with each element of its second 
argument (this must be a list). For each such binding, it then executes the 
test specified in argument three: this test is any sequence of callable Prolog 
goals. If a list element causes this test to fail, delete includes that 
element in the resulting list. It returns the result in its final argument. The 
delete predicate is an excellent example of the power of meta reasoning 
in Prolog: by letting us pass in a specification of the elements we want to 
remove from a list, delete gives us a general tool for implementing a 
range of list operations. Thus, delete lets us define the various filters 
used in process/5 in an extremely compact fashion. We define 
delete: 

delete(X, L, Goal, New_L) :- 

     (bagof(X, (member(X, L), not(Goal)), New_L);  
          New_L = [ ]). 

Generalize_set is a straightforward predicate that recursively scans a 
list of hypotheses and generalizes each one against a training instance. Note 
that this assumes that we may have multiple candidate generalizations at 
one time. In fact, the feature vector representation of Section 7.1.1 only 
allows a single most specific generalization. However, this is not true in 
general and we have defined the algorithm for the general case. 

generalize_set([ ], [ ], _). 

generalize_set([Hypothesis | Rest],  
          Updated_H, Instance):- 

     not(covers(Hypothesis, Instance)), 

     (bagof(X, generalize(Hypothesis, Instance, X),  
          Updated_head); Updated_head = [ ]), 

     generalize_set(Rest, Updated_rest, Instance), 

     append(Updated_head, Updated_rest, Updated_H). 
 
   generalize_set([Hypothesis | Rest],  

          [Hypothesis | Updated_rest], Instance) :- 

     covers(Hypothesis, Instance), 

     generalize_set(Rest, Updated_rest, Instance). 

specific_to_general implements a loop that reads and processes training 
instances: 
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       specific_to_general(H, N) :- 
     write(’H = ‘), write(H), nl, write(’N = ‘),  

     write(N), nl,    

     write(’Enter Instance: ‘), read(Instance),  

     process(Instance, H, N, Updated_H, Updated_N), 

     specific_to_general(Updated_H, Updated_N). 

The following transcript illustrates the execution of this algorithm. 
?- specific_to_general([], []). 

H = [ ] 

N = [ ] 

Enter Instance: positive([small, red, ball]). 

H = [[small, red, ball]] 

N = [ ] 

Enter Instance: negative([large, green, cube]). 

H = [[small, red, ball]] 

N = [[large, green, cube]] 

Enter Instance: negative([small, blue, brick]). 

H = [[small, red, ball]] 

N = [[small, blue, brick], [large, green, cube]] 

Enter Instance: positive([small, green, ball]). 

H = [[small, _66, ball]] 

N = [[small, blue, brick], [large, green, cube]] 

Enter Instance: positive([large, blue, ball]). 

H = [[_116, _66, ball]] 

N = [[small, blue, brick], [large, green, cube]] 

The second version of the algorithm searches in a general to specific 
direction, as described in Section 7.1.1. In this version, the set of candidate 
hypotheses are initialized to the most general possible concept. In the case 
of the feature vector representation, this is a list of variables. It then 
specializes candidate concepts to prevent them from covering negative 
instances. In the feature vector representation, this involves replacing 
variables with constants. When given a new positive instance, it eliminates 
any candidate hypothesis that fails to cover that instance. 

We implement this algorithm in a way that closely parallels the specific to 
general search just described, including the use of the general delete 
predicate to define the various filters of the list of candidate concepts. In 
defining a general to specific search, process will have six arguments. The 
first five reflect the specific to general version: the first a training instance 
of the form positive(Instance) or negative(Instance); 
the second is a list of candidate hypotheses; these are the most general 
hypotheses that cover no negative instances. The third argument is the list 
of positive examples, used to delete any overly specialized candidate 
hypothesis. The fourth and fifth arguments are the updated lists of 
hypotheses and positive examples, respectively. The sixth argument is a list 
of allowable variable substitutions for specializing concepts.  
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Specialization by substituting a constant for a variable requires the 
algorithm to know the allowable constant values for each field of the 
feature vector. These values will have to be passed in as the sixth argument 
of process. In our example of [Size, Color, Shape] vectors, a 
sample list of types might be: [[small, medium, large], 
[red, white, blue], [ball, brick, cube]]. Note that 
the position of each sublist determines the position in a feature vector 
where those values are used; for example, the first sublist defines allowable 
values for the first position of a feature vector. We leave construction of 
this algorithm as an exercise. For guidance we include a run of our 
implementation: 

?- general_to_specific([[_, _, _]], [ ],  

          [[small, medium, large],  
           [red, blue, green],   
           [ball, brick, cube]]). 

H = [[_0, _1, _2]] 

P = [ ] 

Enter Instance: positive([small, red, ball]). 

H = [[_0, _1, _2]] 

P = [[small, red, ball]] 

Enter Instance; negative([large, green, cube]). 

H = [[small, _89, _90], [_79, red, _80],  
          [_69, _70, ball]] 

P = [[small, red, ball]] 

Enter Instance: negative([small, blue, brick]). 

H = [[_79, red, _80],[_69, _70, ball]] 

P = [[small, red, ball]] 

Enter Instance: positive([small, green, ball]). 

H = [[_69,_70,ball]] 

P = [[small, green, ball], [small, red, ball]] 
The full candidate elimination algorithm, as described in Section 7.1.1, is a 
combination of the two single direction searches. As before, the heart of 
the algorithm is the definition of process, with six arguments. The first 
argument to process is a training instance. Arguments two and three are 
G and S, the sets of maximally general and maximally specific hypotheses 
respectively. The fourth and fifth arguments are bound to the updated 
versions of these sets. The sixth argument of process lists allowable 
variable substitutions for specializing feature vectors. 

On positive instances, process generalizes S, the set of most specific 
generalizations, to cover the training instance. It then eliminates any 
elements of S that have been over generalized. It also eliminates any 
elements of G that fail to cover the training instance. It is interesting to 
note that an element of S is overly general if there is no element of G that 
covers it; this is true because G contains those candidate hypotheses that 
are both maximally general and cover no negative instances. process 
uses delete to eliminate these hypotheses. 
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On a negative training instance, process specializes all hypotheses in G 
to exclude that instance. It also eliminates any candidates in S that cover 
the negative instance. As discussed above, specialization of feature vectors 
requires replacing variables with constants. This requires that we pass a list 
of allowable substitutions as the sixth argument to process. We define 
process: 

process(negative(Instance), G, S, Updated_G,  
          Updated_S, Types) :- 

     delete(X, S, covers(X, Instance), Updated_S), 

     specialize_set(G, Spec_G, Instance, Types), 

     delete(X, Spec_G, (member(Y, Spec_G),  
          more_general(Y, X)), Pruned_G), 

     delete(X, Pruned_G, (member(Y, Updated_S),  
          not(covers(X, Y))), Updated_G). 

   process(positive(Instance), G, [ ],  
          Updated_G, [Instance],_) :- %Initialize S 

     delete(X, G, not(covers(X, Instance)),  
          Updated_G). 

process(positive(Instance), G, S,  
          Updated_G, Updated_S,_) :- 

     delete(X, G, not(covers(X, Instance)),  
          Updated_G), 

     generalize_set(S, Gen_S, Instance), 

     delete(X, Gen_S, (member(Y, Gen_S),  
          more_general(X, Y)), Pruned_S), 

     delete(X, Pruned_S, not((member(Y, Updated_G),  
          covers(Y, X))), Updated_S). 

   process(Input, G, P, G, P,_) :- 

        Input \= positive(_), Input \= negative(_), 

        write(`Enter a positive(Instance) or  
          negative(Instance): ‘), nl. 

generalize_set generalizes all members of a set of candidate 
hypotheses to cover a training instance. It is identical to the version defined 
for the specific to general search. specialize_set takes a set of 
candidate hypotheses and computes all maximally general specializations of 
those hypotheses that exclude (do not cover) a training instance. Note the 
use of bagof to get all specializations. 

specialize_set([ ], [ ], _, _). 

specialize_set([HypothesisRest],  
          Updated_H, Instance, Types) :- 

     covers(Hypothesis, Instance), 

     (bagof(Hypothesis, specialize(Hypothesis,  
          Instance,Types), Updated_head) ; 
          Updated_head = [ ]), 

     specialize_set(Rest, Updated_rest, Instance,  
          Types), 

     append(Updated_head, Updated_rest, Updated_H). 
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specialize_set([HypothesisRest],  
          [HypothesisUpdated_rest],Instance,Types):- 

     not (covers(Hypothesis, Instance)), 

     specialize_set(Rest, Updated_rest,  
          Instance, Types). 

specialize finds an element of a feature vector that is a variable. It 
binds that variable to a constant value that it selects from the list of 
allowable values, and which does not match the training instance. Recall 
that specialize_set called specialize with bagof to get all 
specializations. If we call specialize once, it will substitute a constant 
into the first variable; bagof causes it to produce all specializations. 

specialize([Prop_], [Inst_prop_],  
          [Instance_values_]) :- 

     var(Prop), member(Prop, Instance_values),  

     Prop \= Inst_prop. 

specialize([_Tail], [_Inst_tail], [_Types]) :- 

     specialize(Tail, Inst_tail, Types). 

The definitions of generalize, more_general, covers, and 
delete are the same as in the specific to general algorithm defined 
above. candidate_elim implements a top-level read-process loop, 
printing out the current G set, the S set, and calls process on the input: 

candidate_elim([G],[S],_) :- 

     covers(G,S),covers(S,G), 

     write(’target concept is: ‘), write(G),nl. 

candidate_elim(G, S, Types) :- 

     write(’G= ‘), write(G), nl, write(’S= ‘),  

     write(S), nl, write(’Enter Instance: ‘), 

     read(Instance), 

     process(Instance, G, S, Updated_G,  
          Updated_S, Types), 

     candidate_elim(Updated_G, Updated_S, Types). 

To conclude this section we present a trace of the candidate elimination 
algorithm. Note initializations of G, S, and the list of allowable 
substitutions: 

?- candidate_elim([[_, _, _]], [ ],  
          [[small, medium, large],  
           [red, blue, green],  
           [ball, brick, cube]]). 

G= [[_0, _1, _2]] 

S= [ ] 

Enter Instance: positive([small, red, ball]). 

G= [[_0, _1, _2]] 

S= [[small, red, ball]] 

Enter Instance: negative([large, green, cube]). 

G= [[small, _96, _97], [_86, red, _87],  
          [_76, _77, ball]] 
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S= [[small, red, ball]] 

Enter Instance: negative([small, blue, brick]). 

G= [[_86, red, _87], [_76, _77, ball]] 

S= [[small, red, ball]] 

Enter Instance: positive([small, green, ball]). 

G= [[_76, _77, ball]] 

S= [[small, _351, ball]] 

Enter Instance: positive([large, red, ball]). 

target concept is: [_76, _77, ball]	

yes 

 7.2 Introduction: Logic-Based Representatio Explanation Based Learning in Prolog 

The Explanation 
Based Learning 

Algorithm 

In this section, we describe briefly the algorithms for explanation-based 
learning, Section 7.2.1 and then present a Prolog implementation of the 
explanation-based learning in Section 7.2.2. Our implementation is based 
upon Kedar-Cabelli and McCarty’s formulation (Kedar-Cabelli and 
McCarty 1987; Luger 2009, Section 10.5.2), called prolog_ebg, and 
illustrates the power of unification in Prolog. Even though it is quite 
difficult to implement explanation-based learning in many languages, the 
Prolog version is fairly simple. 

Explanation-based learning uses an explicitly represented domain theory 
to construct an explanation of a training example, usually a proof that the 
example logically follows from the theory. By generalizing from the 
explanation of the instance, rather than from the instance itself, 
explanation-based learning filters noise, selects relevant aspects of 
experience, and organizes training data into a coherent structure. 

There are several alternative formulations of this idea. For example, the 
STRIPS program for representing general operators for planning (see 
Section 6.3) has exerted a powerful influence on this research (Fikes et al. 
1972). Meta-DENDRAL established the power of theory-based 
interpretation of training instances (Luger 2009, Section 10.5.1). A number 
of authors (DeJong and Mooney 1986, Minton 1988) have proposed 
alternative formulations of this idea. The Explanation-Based 
Generalization algorithm of Mitchell et al. (1986) is also typical of the 
genre. In this section, we examine a variation of the explanation-based 
learning (EBL) algorithm developed by DeJong and Mooney (1986). 

EBL begins with: 
1. A target concept. The learner’s task is to determine an effective 

definition of this concept. Depending upon the specific 
application, the target concept may be a classification, a 
theorem to be proven, a plan for achieving a goal, or a heuristic 
for a problem solver. 

2. A training example, an instance of the target. 

3. A domain theory, a set of rules and facts that are used to explain 
how the training example is an instance of the goal concept. 

4. Operationality criteria, some means of describing the form 
concept definitions may take. 
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To illustrate EBL, we present an example of learning about when an object 
is a cup. This is a variation of a problem explored by Winston et al. (1983) 
and adapted to explanation-based learning by Mitchell et al. (1986). The 
target concept is a rule that may be used to infer whether an object is a cup; 
again, we adopt a predicate calculus representation: 

premise(X)  cup(X) 

where premise is a conjunctive expression containing the variable X. 

Assume a domain theory that includes the following rules about cups: 

liftable(X) ^ holds_liquid(X)  cup(X) 

part(Z, W) ^ concave(W) ^ points_up(W)   
     holds_liquid(Z) 

light(Y) ^ part(Y, handle)  liftable(Y) 

small(A)  light(A) 

made_of(A, feathers)  light(A) 

The training example is an instance of the goal concept. That is, we are 
given: 

cup(obj1) 

small(obj1) 

part(obj1, handle) 

owns(bob, obj1) 

part(obj1, bottom) 

part(obj1, bowl) 

points_up(bowl) 

concave(bowl) 

color(obj1, red) 

Finally, assume the operationality criteria require that target concepts be 
defined in terms of observable, structural properties of objects, such as 
part and points_up. We may provide domain rules that enable the 
learner to infer whether a description is operational, or we may simply list 
operational predicates. 

A theorem prover constructs an explanation of why the example is an 
instance of the training concept: a proof that the target concept logically 
follows from the example, as in Figure 7.5. Note that this explanation 
eliminates such irrelevant concepts as color(obj1, red) from the 
training data and captures (only) those aspects of the example known to be 
relevant to the goal. 

The next stage of explanation-based learning generalizes the explanation to 
produce a concept definition that may be used to recognize other cups. 
EBL accomplishes this by substituting variables for those constants in the 
proof tree that depend solely on the particular training instance, as may be 
seen in Figure 7.5 (bottom). Based on the generalized tree, EBL defines a 
new rule whose conclusion is the root of the tree and whose premise is the 
conjunction of the leaves: 



102 Part II: Programming in Prolog 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 7.5. A specific (top) and generalized (bottom) proof that an object, 
X, is a cup. 

small(X) ^ part(X, handle) ^ part(X, W) ^ concave(W) 

     ^ points_up(W)  cup(X). 

In constructing a generalized proof tree, our goal is to substitute variables 
for those constants that are part of the training instance while at the same 
time retaining those constants and constraints that are part of the domain 
theory. In this example, the constant handle originated in the domain 
theory rather than the training instance. We have retained it as an essential 
constraint in the acquired rule. 

We may construct a generalized proof tree in a number of ways using a 
training instance as a guide. Mitchell et al. (1986) accomplish this by first 
constructing a proof tree that is specific to the training example and 
subsequently generalizing the proof through a process called goal regression. 
Goal regression matches the generalized goal (in our example, cup(X)) 
with the root of the proof tree, replacing constants with variables as 
required for the match. The algorithm applies these substitutions 
recursively through the tree until all appropriate constants have been 
generalized. See Mitchell et al. (1986) for a detailed description of this 
process. We next implement the explanation based learning algorithm in 
Prolog. 
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Prolog 
Implementation 

of EBL 

Instead of building an explanation structure and maintaining separate sets 
of specific and general substitutions as done in Section 7.2.1, our algorithm 
will build both the proof of the training instance and the generalized proof 
tree concurrently. 

For this example, we represent proof trees as we did in exshell (Section 
6.2). When prolog_ebg discovers a fact, it returns this fact as the leaf of 
a proof tree. The proof of conjunctive goals is the conjunction of the proof 
of the conjuncts. The proof of a goal that requires rule chaining is 
represented as (Goal :- Proof), where Proof becomes bound to 
the proof tree for the rule premise. 

The heart of the algorithm is prolog_ebg. This predicate takes four 
arguments: the first is the goal being proved in the training example, the 
second is the generalization of that goal. If the domain theory enables a 
proof of the specific goal, it binds the third and fourth arguments to a 
proof tree for the goal and the generalization of that proof. For instance, 
implementing the cup example from Section 7.2.1, we would call 
prolog_ebg with the arguments: 

prolog_ebg(cup(obj1), cup(X), Proof, Gen_proof). 

We assume that Prolog has the domain theory and training instance of 
Section 7.2.1. When prolog_ebg succeeds; Proof and Gen_proof 
are the proof trees of Figure 7.5. 

prolog_ebg is a straightforward variation of the exshell meta-
interpreter of Section 6.2. The primary difference is that prolog_ebg 
solves the goal and the generalized goal in parallel. A further interesting 
aspect of the algorithm is the use of the predicate duplicate to create 
two versions of each rule: the first version is the rule as it appears in the 
domain theory, the second binds variables in the rule to the values in the 
training instance. We define prolog_ebg: 

prolog_ebg(A, GenA, A, GenA) :- clause(A, true). 

prolog_ebg((A, B), (GenA, GenB), (AProof, BProof),  
          (GenAProof, GenBProof)) :- !, 

     prolog_ebg(A, GenA, AProof, GenAProof), 

     prolog_ebg(B, GenB, BProof, GenBProof). 

prolog_ebg(A, GenA, (A :- Proof), (GenA :-  
          GenProof)) :- 

     clause(GenA, GenB), 

     duplicate((GenA :- GenB), (A :- B)), 

     prolog_ebg(B, GenB, Proof, GenProof). 

Duplicate relies upon the behavior of assert and retract to 
create a copy of a Prolog expression with all new variables. 

duplicate(Old, New) :-  

     assert(’$marker’(Old)), 

     retract(’$marker’(New)). 

extract_support returns the sequence of the highest level 
operational nodes, as defined by the predicate operational. The 
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extract_support predicate implements a recursive tree walk, 
terminating the recursion when it finds nodes in the proof tree that 
qualifies as operational. 

extract_support(Proof, Proof) :- operational(Proof). 

extract_support((A :- _), A) :- operational(A). 

extract_support((AProof, BProof), (A, B)) :- 

     extract_support(AProof, A), 

     extract_support(BProof, B). 
 
extract_support((_ :- Proof), B) :-    

     extract_support(Proof, B). 

The final component of the explanation based generalization algorithm 
constructs the learned rule, using the prolog_ebg and 
extract_support predicates: 

ebg(Goal, Gen_goal, (Gen_goal :- Premise)) :- 

     prolog_ebg(Goal, Gen_goal, _, Gen_proof), 

     extract_support(Gen_proof, Premise). 

We illustrate the execution of these predicates with the example of learning 
structural definitions of cups from Section 7.2.1, as described originally by 
Mitchell et al. (1986). We begin with a domain theory for cups and other 
physical objects. The theory includes the rules: 

cup(X) :- liftable(X), holds_liquid(X). 

holds_liquid(Z) :-  

     part(Z, W), concave(W), points_up(W). 

liftable(Y) :-  

     light(Y), part(Y, handle). 

   light(A):- small(A). 

   light(A):- made_of(A, feathers). 

The learner is also given the following example, in which obj1 is known 
to be a cup: 

small(obj1). 

part(obj1, handle). 

owns(bob, obj1). 

part(obj1, bottom). 

part(obj1, bowl). 

points_up(bowl). 

concave(bowl). 

color(obj1, red). 

The operationality criteria define predicates that may be used in a rule: 

operational(small(_)). 

operational(part(_, _)). 
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operational(owns(_, _)). 

operational(points_up(_)). 

operational(concave(_)). 

A run of the algorithm on the cup example illustrates the behavior of these 
predicates. Of course, symbols such as “_0” and “_106” indicate specific 
variables in Prolog, i.e., all uses of _106 represent the same variable: 

?- prolog_ebg(cup(obj1), cup(X), Proof, Gen_proof). 

X = _0, 

Proof = cup(obj1) :- 
    ( (liftable(obj1) :- 
    ( (light(obj1) :- 
      small(obj1)),  
                 part(obj1, handle))), 
    (holds_liquid(obj1) :- 
    (part(obj1, bowl),  
                concave(bowl),  
                points_up(bowl)))) 

Gen_prooof = cup(_0) :- 
       ( (liftable(_0) :- 
       ( (light(_0) :- 
       small(_0)),  
                part(_0, handle))), 
       (holds_liquid(_0) :- 
          (part(_0, _106),  
                concave(_106),  
                points_up(_106)))) 

When we give extract_support the generalized proof from the 
previous execution of prolog_ebg, it returns the operational nodes of 
the proof, in left-to-right order: 

?- extract_support((cup(_0) :- 
    ( (liftable(_0) :- 
      ( (light(_0) :- 
                 small(_0)), 
                 part(_0, handle))), 
    (holds_liquid(_0) :- 
      (part(_0,_106),  
               concave(_106),  
               points_up(_106))))), Premise), 
_0 = _0, _106 = _1, 
Premise = (small(_0), part(_0,handle)), part(_0,_1),  
          concave(_1), points_up(_1) 

Finally, ebg uses these predicates to construct a new rule from the 
example. 

?- ebg(cup(obj1), cup(X), Rule). 

X = _0, 

Rule = cup(_0) :- 
     ((small(_0), part(_0, handle)), part(_0,_110),  
          concave(_110), points_up(_110)) 

In the next two chapters we address the problem of understanding natural 
language. We first, in Chapter 8, discuss issues in semantic (or language 
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meaning) representations, building Prolog structures for conceptual 
dependencies. We then build several recursive descent parsers to capture 
syntactic relationships in sentences. These meta-interpreters demonstrate 
context free, context sensitive, deterministic, and probabilistic parsing. In 
Chapter 9 we present the Earley parser in Prolog, which uses techniques 
from dynamic programming. The Earley parser is often called a chart 
parser. 

 Exercises 

 1. The run of the candidate elimination algorithm shown in Figure 7.4 does 
not show candidate concepts that were produced but eliminated because 
they were either overly general, overly specific, or subsumed by some other 
concept. Re-do the execution trace, showing these concepts and the 
reasons each was eliminated. 

2. Develop a domain theory for explanation-based learning in some 
problem area of your choice. Trace the behavior of an explanation-based 
learner in applying this theory to several training instances. 

3. Implement a general to specific search of the version space using the 
feature vector representation of Section 7.2. We can specialize feature 
vectors by replacing variables with constants; since this requires telling the 
algorithm of allowable values for each field of the feature vector, we must 
pass this in as an extra argument. The following definition of 
run_general, the top-level goal, illustrates the necessary initializations 
for the example used in the text: objects may be small, medium, or 
large, their color may be red, blue, green, and their shape may be 
ball, brick, or cube. 

run_general :- 

     general_to_specific([[_, _, _]], [ ], 
          [[small,medium,large], [red,blue,green],  
          [ball,brick,cube]]). 

4. Create another domain theory example, as proposed in exercise 2 above, 
and run it with prolog_ebg. 

5. Extend the definition of ebg so that, after it constructs a new rule, it 
asserts it to the logic database where it may be used in future queries. Test 
the performance of the resulting system using a theory for a suitably rich 
domain. You might do this by constructing a theory for a domain of your 
choice, or extending the theory from the cup example to allow it to explain 
different types of cups such as Styrofoam cups, cups without handles, etc. 

 


